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Abstract. As a fundamental step in most visual text-related tasks,
scene text detection has been widely studied for a long time. However,
due to the diversity in the foreground, such as aspect ratios, colors,
shapes, etc., as well as the complexity of the background, scene text
detection still faces many challenges. It is often difficult to obtain dis-
criminative text-level features when dealing with overlapping text regions
or ambiguous regions of adjacency, resulting in suboptimal detection
performance. In this paper, we propose Text-specific Region Contrast
(TRC) based on contrastive learning to enhance the features of text
regions. Specifically, to formulate positive and negative sample pairs for
contrast-based training, we divide regions in scene text images into three
categories, i.e., text regions, backgrounds, and text-adjacent regions. Fur-
thermore, we design a Text Multi-scale Strip Convolutional Attention
module, called Text MSCA, to refine embedding features for precise con-
trast. We find that the learned features can focus on complete text regions
and effectively tackle the ambiguity problem. Additionally, our method
is lightweight and can be implemented in a plug-and-play manner while
maintaining a high inference speed. Extensive experiments conducted
on multiple benchmarks verify that the proposed method consistently
improves the baseline with significant margins.

Keywords: Scene Text Detection - Contrastive Learning - Feature
Enhancement - Lightweight Method

1 Introduction

Scene text conveys valuable information and thus is of critical importance for the
understanding of natural scenes. As an essential step prior to many text-related
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tasks e.g., text recognition [18], text retrieval [5], etc., scene text detection (STD)
has received extensive attention from researchers and practitioners alike.

Text with Different Fonts

Fig. 1. The left side depicts challenges encountered in scene text detection under vari-
ous scenarios, while the right side showcases the method’s explanation in feature space.

Roughly speaking, most STD methods are inspired by object detection and
segmentation paradigms, which can be divided into regression-based methods
[12,31] and segmentation-based methods [4,11,17,24,25]. A segmentation-based
text detection method has an innate advantage in the detection speed of scene
text. Nevertheless, directly applying general segmentation networks for STD suf-
fers from several limitations. First, commonly used semantic segmentation back-
bones often consist of stacked convolution networks and pooling layers, which can
cause a loss of context information and increase false positive samples (e.g., rail-
ings misclassified to text category). Second, segmentation-based methods classify
images at the pixel level, making adjacent text can not be separated effectively.
Third, the larger aspect ratio of scene text makes it difficult for segmentation
models designed for general objects to adapt.

Admittedly, there are some efforts to tackle one or more of the problems
mentioned above. For example, in targeting the false positive problem, SPC-
NET [26] utilizes a text context module to strengthen global information and
a re-scoring mechanism to filter out false positives. For adjacent text detection,
PixelLink [4] introduces the link prediction scheme, which uses 8 neighbors of
each pixel to distinguish different instances. PSENet [24] designs a progressive
scale expansion algorithm to adapt to text with large aspect ratios. However, due
to the diversity of text foreground and the complexity of the background, these
methods still struggle to effectively address the challenges of detecting variable
text. Moreover, complex feature-processing blocks or post-processing steps are
required, which causes a serious decrease in model efficiency.

In this work, aiming to ensure a fast inference speed, we address the afore-
mentioned problems from a feature enhancement perspective. A method termed
Text-specific Region Contrast (TRC) is proposed, which utilizes contrastive
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learning [19] to obtain more discriminative features for STD. To be specific,
different from the common practice [8], we construct a new category of adja-
cent text samples to form more meaningful contrast pairs accompanied by a
novel dynamic region-level sampling strategy. Through these operations, our
model aggregates more context information and obtains enhanced features. Fur-
thermore, we design a feature refinement module Text Multi-scale Strip Con-
volutional Attention (TextMSCA), which utilizes strip convolutions to fit text
instances with extreme aspect ratios. As shown in Fig.1, equipped with the
proposed contrastive learning scheme, the detector can obtain more accurate
and complete detection results. Extensive experiments conducted on benchmarks
show that using TRC and TextMSCA techniques improves the baseline PAN [25]
with significant margins. Especially, with the help of SynthText pretraining, our
method achieves F-measure performance gains of 2.1%, 2.8%, and 7.5% respec-
tively on the CTW1500 [30], TotalText [3] and MSRA-TD500 [29] datasets while
maintaining a high inference speed. The contributions are summarized as follows:

— We propose a novel region-level contrastive learning framework for scene text
detection, named Text-specific Region Contrast (TRC), which is able to tackle
typical detection challenges via feature enhancement.

— In the proposed framework, text adjacent regions are involved as a new neg-
ative category, and a dynamic region-level sampling strategy is implemented
based on the weighting of the groundtruth map and score map.

— We design a feature refinement module, i.e., TextMSCA, which could be
accustomed to extreme aspect ratios of texts to extract robust representa-
tions.

— Extensive experiments demonstrate that the proposed method surpasses the
baseline with significant margins and maintains efficient inference overhead.

2 Related Work

Scene Text Detection. Inspired by upstream detection and segmentation
frameworks, existing scene text detection methods can be mainly divided into
regression-based methods [12,31] and segmentation-based methods [4,11,17,
24,25]. Compared with regression-based methods, segmentation-based methods
achieve great success to detect curved text instances. In this paper, we focus on
segmentation-based methods with lightweight backbones. PAN [25] and DBNet
[11] are two representations of real-time methods, which separately design a pixel
aggregation and a differentiable binarization mechanism.

Contrastive Learning. Contrastive learning typically pulls positive samples
closer and pushes negative samples away. As a pioneering research, MoCo [7]
utilizes data augmentation techniques to obtain positive sample pairs and stores
negative samples in a memory bank. SimCLR [2] further simplifies this archi-
tecture by using other samples in the batch as negative samples. In addition
to being applied in unsupervised scenarios, contrastive learning can effectively
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assimilate annotation information. Supervised contrastive learning [10] intro-
duces labels into the contrastive paradigm, and this formulation has been suc-
cessfully applied in semantic segmentation. Wang et al. [23] raise a pixel-to-pixel
contrastive learning method for semantic segmentation in the fully supervised
setting. Hu et al. [8] form contrastive learning in a region manner.
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TextMSCA === TextMSCA

/" Memory Bank

! 0000 O]
~ 00000 !
~0000 O]

T

Projector o

Predict Map

Fig. 2. Illustration of the pipeline. A general segmentation-based scene text detection
framework is placed at the bottom, and a plug-and-play contrastive learning branch is
placed at the top. Details of the strip convolution setting in TextMSCA are shown in
the top left. Text-specific region contrast (TRC) is shown at the top right.

3 Methodology

3.1 Overall Architecture

Previous works [17,24] have demonstrated that segmentation-based text detec-
tion methods are effective in handling complex curved text instances. In our
experiments, we mainly utilized lightweight segmentation-based pipelines such
as PAN [25] as baselines. These models share commonalities: a CNN-based back-
bone for extracting image features, a feature refinement layer for integrating
multi-scale features, and a detection head for classifying dense pixels prior to
post-processing the segmentation map.

To state our method better, we pre-define some abbreviations of the general
model. We formulate fg as the combination of the CNN-based backbone and
the feature fusion module. Given an input image z € RE*#*W the feature map
F € RPXHXW can be extracted by feeding x into fz. C, H, and W represent the
channel, height, and width of the image, respectively. D represents the feature
dimension of every pixel embedding F, € RP,p € {p = (i,5)li = 1,...,H,j =
1,...,W} in feature map F. Then a detection head fg4.; maps the feature F into
a normalized score map Y = {y,|p} = faer(F) € RE*W which indicates the
presence of texts on the position of pixel p.
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In our methods, we make use of the feature map F' as the embedding input
in the refinement and contrast branch. We design a cascaded feature refinement
module TextMSCA to transfer F into F* € RP*HXW o obtain more suit-
able text-specific features. And the binary groundtruth map Y is the supervised
signal in contrastive paradigm. With the supervision of score map Y and the
groundtruth map Y € REW we aggregate features of text regions, background,
and text adjacent regions and perform contrastive learning in F™*. Details are
presented in Sect. 3.2, and the pipeline of our approach is displayed in Fig. 2.

3.2 Sampling in Text-Specific Region Contrast

The cross-image contrastive paradigm includes two sample groups: one from a
mini-batch and another from a memory bank. Both groups have samples from
the text or background category. We notice that nearby texts are often linked
due to proximity and similarity, requiring special consideration. To handle this,
we introduce negative samples called text adjacent regions (shown in Fig.3).
This helps address ambiguity in adjacent text connections. Finally, we use a
contrastive loss to bring positive samples closer and separate negative samples.
In this section, we provide a detailed account of the negative sample construction
and sampling strategy. Additionally, we explain how to construct features of text
adjacent regions.

1) Region-Level Sampling. Region-Level feature construction pays attention
to designing an overall feature that comes from the average pooling of pixel
embedding belonging to the same class in an image. To make full use of labels,
we use predicted score maps and groundtruth masks to distinguish true or false
foreground pixel samples and assign them different weights, which means to
guide the model focusing on samples easy to misclassify. Given the enhanced
feature map F* € RP*HXW and score map Y € REXW | firstly we use a prede-
fined threshold ¢ which follows the experiment setting in [25] and groundtruth
map Y € REXW {0 obtain right or wrong anchors. For example, for a speci-
fied category text: {k = 1|category = text}, right pixel map can be denoted as
RMap* = 1(Y, > t) N 1(Y, > t), while wrong pixel map can be denoted as
WMap' = 1(Y, < t) N 1(Y, > t). The definition of text region anchor could be
set as:

2, Fy (1 —y,) - RMapy + W Mapj)
2, 1Yy

where k denotes the class of text: {k = l|category = text} or background:

{k = O|category = background} while Y, >t denotes Y!*** and Y}, < t denotes

Y];"wkgm“"d. And 1(-) represents the binary classifier for pixel in Y and Y and
1| -| denotes the operation employed on corresponding category k, such as when
k= text, 1[YF| = 1|YF > 1|.

Regarding the other group of sampling pixels in the memory bank, we update
the region anchor vectors within a mini-batch to the corresponding memory

; (1)

Tk
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Algorithm 1. Text Adjacent Region
Generation

Input: batchsize B, refined feature F™*,
dilated coefficient o, GT map Y, area of
text instance set T" of each GT map

Output: text adjacent region embedding
RBXD

Tadjacent S
ad 1: for i-th feature and GT map in B do
2:  Refined feature F;*, GT map Y;.

T i yrm—— 3: for k-th text instance Ty in Y; do

4: Dilate region T} with coef. o.

Fig.3. We visualize and explain the 5: end for

specific design of contrast sampling. As ~ 6:  Get intersection region r; in Y;.

we can see, we add a new category (red 7:  Apply Eq. 2 with F}" and Y;.

areas) of the negative sample to rep- 8: end for

resent the text adjacent region. (Color ~ 9: Get text adjacent region embedding

figure online) Tadjacent-

queue after computing the training loss. These updated vectors are then used
in the subsequent iterations. The complete sampling process is illustrated in the
Supplemental Material.

2) Text Adjacent Region Generation. We discovered a false detection
issue in some segmentation-based scene text detection models. When two text
instances are close to each other, they may merge into one instance. This is dif-
ficult to avoid due to dense text and a single category. To address this problem,
we creatively constructed negative samples representing adjacent text regions as
shown in Fig. 3. By separating these areas from the background, we enable the
detection model to recognize the existence of text adjacent areas.

The features of text adjacent regions are calculated separately. We dilate text
regions with an offset by the Vatti clipping algorithm and get intersections of
dilated regions to represent text adjacent region T AMap. The adjacent region
feature is calculated by using Eq. 2 and details are shown in Algorithm 1.

>owy F* - TAMap
Zﬂ|5}adjacent| -

(2)

Tadjacent =

3.3 Text-Specific Feature Refinement Module

Features used in contrastive learning mostly arise from general feature fusion
layers. Inspired by the MSCA module in SegNeXt [6], we design a text-specific
multi-scale strip convolutional attention module (TextMSCA) to refine features
F from fg because text often has strip-like shape and extreme aspect ratios. As
shown in Fig. 2, we look into the aspect ratio of text in the dataset and set four
special strip convolutions to refine text features.
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4
F* = Convy 1 (D) SCi(DC(F))) ® F (3)
i=0
Here DC' denotes depth-wise convolution and SC; denotes the i-th strip con-
volution branch in Text MSCA. ® is the element-wise matrix multiplication oper-
ation. After putting the feature map into this module, Text MSCA can aggregate
the strip context and extract better text-specific features. Therefore, F'* repre-
sents scene text features better in more directions and aspects.

3.4 Loss Function and Inference

Contrastive Loss. After describing our contrastive sampling and refine-
ment module, we introduce the supervised contrastive formula. This method is
employed when data is labeled. Our method is derived from self-supervised con-
trastive learning, which uses the InfoNCE [16] loss function. For segmentation-
based tasks, we need a more fine-grained loss calculation at the region and pixel
levels defined below:

1 exp(r-rt/T)
»Ccon rast = T, 1 - 4
7 BP DR Ry RS s vy

In detail, 7 denotes the anchor feature, when faced with region-level contrast
loss, T means the positive region samples that belong to the same label as the
anchor region r, and r~ means the negative region samples. M, represents a
set of positive regions samples in a mini-batch or the memory bank. Note that
region embedding r always comes from the average pooling of pixels embedding
in corresponding category regions.

Overall Objective. The overall loss function can be formulated as:
L= Etcmt + A Lcontrast (5)

where L.+ denotes the original loss and Lc.ontrest represents the contrast loss
used in training stage. A is a hyper-parameter that balances the weights of Lsc.+
and L.ontrast- The contrast branch does not participate in the inference phase
and makes the model maintain the original efficiency.

4 Experiment

4.1 Experimental Setting

Datasets. We utilize 5 typical scene text detection datasets for experiments.
ICDAR 2015 [9] includes many dense and small instances. CTW1500 [30]
and Total-Text [3] include instances with various shapes such as horizontal,
multi-oriented, and curved situations. MSRA-TD500 [29] is a multi-language
dataset including Chinese and English text instances. At last MLT-2017 [15] is
also a large multi-language dataset that includes 9 languages.
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Table 1. Ablation of text adjacent regions as negative samples. TRC(w/0) denotes
without consideration of text adjacent regions.

Method CTW1500 TotalText TD500

P R F P R F P R F
PAN 84.6 | 77.7 |81 88 |79.4 |83.5 80.7 |77.3 |78.9
PAN+TRC(w/o0) | 85.7 | 77.2 | 81.3 |88.3 |80 |83.9 |85.8 |78.9 |82.1
PAN+TRC 86.7 | 78.082.1/89.3|81.3|85.1|88.2|80.7 84.3

Implementation Details. We use ResNet18 as the lightweight backbone by
default and PAN [25] is used as the baseline to evaluate the effectiveness of our
method due to its stability and universality. The contrastive learning branch is
a plug-and-play component, so the detection branch uses the original baseline
settings for hyperparameters. PAN is trained from scratch, and we follow default
strategies for data augmentation and optimization. The coefficient A\ in Eq.5
is set to 0.025, and the temperature 7 in the contrastive loss is set to 0.7 as
in [23]. During inference, we use the same method as the original model, and the
TextMSCA module and contrastive branch are not involved.

4.2 Ablation

Effectiveness of Text Adjacent Regions. We created a contrastive sampling
strategy specifically tailored to the characteristics of the text, with text adjacent
regions added to the memory bank as negative samples. We compared the results
of using this strategy versus not using it on three datasets with complex text
shapes. Table 1 shows that adding text adjacent regions improves the effective-
ness of contrastive learning, especially on the MSRA-TD500 dataset with 2.2%
improvement. This design helps the model pay attention to ambiguous regions
and effectively distinguish text boundaries, resulting in more robust features and
alleviating the problem of connecting adjacent texts.

Effectiveness of TextMSCA. We compared our proposed Text MSCA mod-
ule with the original MSCA [6] module to validate its effectiveness. We con-
ducted experiments on three datasets, setting the contrastive branch’s TRC
with two types of negative samples, as in the previous ablation experiment.
Table 3 shows that TextMSCA outperforms MSCA by up to 3.1% on MSRA-
TD500. The heatmap figure in the supplemental materials further demonstrates
that our large-scale strip convolution can better extract text features in various
aspect ratios, providing more detailed and robust information in images.

The Flexibility of TRC. To justify the flexibility of TRC in a plug-and-play
manner, we transfer the contrastive branch into another segmentation-based
scene text detection model DB [11] and explore whether it brings improvements
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Table 2. Ablation on DB. Table 4. Comparisons on CTW1500. x*
means adding TextMSCA.
Method |1C15| MLT17[CTW1500] TotalText| TD500
DB 823 [71.0 810 82.8 828 Method Ext P TR F FPS
DB{TPC 821 |72.5 |81.4 832 832 FAST [37] — 911604 212
DB+TRC|82.6/72.1 [81.4 840 |84.1 TextSnake [14] v |67.9|85.3/75.6 | 1.1
TextField [27] v 183.0/79.8/81.4 |-
TextRay [21] v |82.8/80.4/81.6
. ABCNet [12] v |81.4|78.5/81.6
Table 3. Ablation of TextMSCA. DENet(RIS) [11] |« 848 77.5 810 55
: CTN(RI8) [17] |- [85.5/79.2/82.2 |40.8
Method CTW1500 TotalText TD500 Fuzzy(R18) [22] v 184.6/77.7/81.0 135.2
P R F P R F P R F  pANRIS) 25] |- |84.6/77.7 81.0 398
PAN 846 [77.7[81 |88 |79.4 835 |80.7 |77.3 |78.9 pPAN(RIS)*LTPC|— |86.0 77.0/82.1 38.2
+MSCA 86.3 |77.9/81.9 |88.4 |80.5 |84.3 |84.7 |78 |81.2 PAN(R18)*+TRC |- 86.7/78.0/82.1 |34.2
+TextMSCA |86.7|78 |82.1/89.3|81.3| 85.1|88.2/80.7|84.3 PAN(RI8)*+TRC|v  |87.2/79.4/83.1/34.2

or not. We employ the contrastive branch to train a new DB model without
TextMSCA module on five classic datasets and results are shown in Table 2.
Text Pixel Contrast (TPC) [23] is a pixel-level sampling method for semantic seg-
mentation tasks. We also compare it with TRC in the experiment. Experimental
results show that with the attachment of the contrastive branch, DB gains 1.5%,
1.2%, and 1.3% improvements on MLT17, TotalText, and TD500, respectively.
Moreover, TRC outperforms TPC on multiple datasets, which demonstrates the
effectiveness of our method.

4.3 Performance Comparison

To evaluate the effectiveness of our method, we conduct thorough experiments
on three benchmark datasets CTW1500, TotalText, and MSRA-TD500 in both
qualitative and quantitative forms.

Table 5. Comparisons on TotalText. * Table 6. Comparisons on MSRA-TD500.

means adding TextMSCA. * means adding TextMSCA.

Method Ext. | P R F FPS Method Ext. | P R F FPS
TextSnake [14] v 82.7|74.578.4 |~ MCN [13] v 88.0/79.0/83.0 |—
PSENet-1s [24] v 84.0/78.0/80.9 | 3.9 PixeLink [4] v 83.0/73.2|77.8 |3
TextField [27] v |81.2/79.9/80.6 |- TextSnake [14] |v  83.2/73.9/78.3 |1.1
CRAFT [1] v 87.6/79.9|83.6 |- MSR [28] v 87.4|76.7|81.7 |-
DBNet(R18) [11] |V 88.3|77.9/82.8 |50 CRAFT [1] v 88.2|78.2/82.9 |8.6
ABCNet [12] v |87.9/81.384.5 |- SAE [20] v |84.2]81.7(82.9 |-
OPMP [31] v 85.2/80.3|82.7 |3.7 DBNet [11] v 91.5|79.2|84.9 |32
CTN [17] — = |- |s5.6 |24 CTN [17] - = |- 835|205
Fuzzy [22] v 88.7/79.984.1 |24.3 Fuzzy [22] v 89.3/81.685.3 |—
PAN(R18) [25] |- 88.0/79.4/83.5 [39.6  PAN(R18) [25] |- 80.7|77.3/78.9 [30.2
PAN(R18)*+TPC |- 88.5/80.4(84.3 [39.1 PAN(R18)*+TPC |- 85.8|78.9(82.1 |33.7
PAN(R18)*+TRC |- 89.3/81.3/85.1 |37.9 PAN(R18)*+TRC |- 88.2/80.7/84.3 |132.8
PAN(R18)*+TRC | v 90.7/82.4/86.3 | 37.2 PAN(R18)*+TRC | v 89.8/83.3/86.4|32.6
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Firstly, we present the results under different contrastive settings qualita-
tively. To reflect the effectiveness that contrastive learning brings to the scene
text detection, we follow the training mode for PAN [25] that only uses the
ResNet18 as the backbone with or without pretraining using SynthText. As
we can see in Table4, it brings 1.1% improvements to PAN without pretraining.
In Table5 and Table 6, results show that it brings a maximum of 1.6% improve-
ments on TotalText and 5.4% improvements on MSRA-TD500. We also pretrain
the model with SynthText and finetune the model on these datasets, and it
brings further improvement. Results from Table4, Table5 and Table 6 demon-
strate that using cross-image region-level contrastive learning assists PAN to
get impressive improvements and it even catches up with most methods using
ResNeth0 as their backbone. FPS would decrease slightly due to the increasing
number of connected areas in pixel aggregation before filtering, but the time
consumption is negligible. In addition, Fig.4 shows our visualization results.
Intuitively, the contrastive branch with TRC and TextMSCA solves the prob-
lem of text detection errors such as stripe-like patterns. When faced with a line
of text with different colors or fonts, it also performs better. The quantitative
result and the qualitative visualization prove that our proposed model extracts
more robust text features from images instead of relying on colors or shapes.

Fig. 4. Visualization of groundtruth (left), results of the original PAN (middle), and
PAN with the proposed contrastive branch (right).

5 Conclusion

In this paper, we propose a text-specific region contrast (TRC) method to
enhance the feature of text regions for scene text detection. Then, a text multi-
scale strip convolutional attention module (TextMSCA) is designed to further
refine embedding feature. We conduct extensive experiments and visualizations
to demonstrate the effectiveness of contrastive learning in enhancing text detec-
tion. Moreover, the proposed contrastive branch is a plug-and-play component



Feature Enhancement with Text-Specific Region Contrast for STD 13

without introducing additional computation during the inference phase. In the
future, we will extend our method to address other relevant tasks, for example,
multi-language text detection.
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