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Beyond Instance Discrimination: Relation-Aware
Contrastive Self-Supervised Learning

Yifei Zhang , Chang Liu , Yu Zhou , Weiping Wang , Qixiang Ye , Senior Member, IEEE,
and Xiangyang Ji , Member, IEEE

Abstract—Contrastive self-supervised learning (CSL) based on
instance discrimination typically attracts positive samples while
repelling negatives to learn representations with pre-defined
binary self-supervision. However, vanilla CSL is inadequate in
modeling sophisticated instance relations, limiting the learned
model to retain fine semantic structure. On the one hand, samples
with the same semantic category are inevitably pushed away
as negatives. On the other hand, differences among samples
cannot be captured. In this paper, we present relation-aware
contrastive self-supervised learning (ReCo) to integrate instance
relations, i.e., global distribution relation and local interpolation
relation, into the CSL framework in a plug-and-play fashion.
Specifically, we align similarity distributions calculated between
the positive anchor views and the negatives at the global level to
exploit diverse similarity relations among instances. Local-level
interpolation consistency between the pixel space and the feature
space is applied to quantitatively model the feature differences
of samples with distinct apparent similarities. Through explicitly
instance relation modeling, our ReCo avoids irrationally pushing
away semantically identical samples and carves a well-structured
feature space. Extensive experiments conducted on commonly used
benchmarks justify that our ReCo consistently gains remarkable
performance improvements.

Index Terms—Global distribution relation, local interpolation
relation, relation-aware contrastive self-supervised learning, self-
supervised learning.

I. INTRODUCTION

IN THE deep learning era, large-scale pre-training [1], [2]
then downstream fine-tuning has become a dominant learn-

ing paradigm [3], [4], [5], [6]. However, supervised pre-training
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typically focuses on task-specific features, resulting in lim-
ited model generalization. Building finely annotated large-scale
datasets is also laborious, expensive, and sometimes impractical.
Inspired by human cognition from unlabeled data, unsupervised
visual representation learning is attracting growing attention [7],
[8], [9], [10], [11].

Mainstream approaches either manually design specific pre-
text tasks to assimilate the intrinsic data structure [8], [12],
[13], [14], [15], or encode data similarities with a contrastive
self-supervised learning (CSL) paradigm [9], [16], [17], [18].
Unlike handcrafted pretext tasks that are limited in exhaust-
ing correlating human priori, CSL with instance discrimination
aims at learning view-invariant representation, which presents
superior performance and great potential [9], [18], [19], [20],
[21]. Based on InfoNCE loss [16], ISIF [19], MoCo [9] and
SimCLR [18] introduce siamese networks to attract different
instance views as positives while repelling other instances in
a mini-batch or a memory bank as negatives. However, since
negative samples are naively defined as different images, false
negatives with the same semantic content inevitably occur, and
their specific similarity relations are also not taken into account.
Models learned with “hard” binary positive and negative assign-
ments are apparently limited by biased and incomplete semantic
structure learning of the data.

In this article, we propose a simple yet effective relation-
aware contrastive self-supervised learning (ReCo) approach to
concurrently explore “soft” instance relations of global distri-
bution and local interpolation, Fig. 1. Specifically, in the global
perspective, we enrich positive sample pairs with positive distri-
bution pairs by calculating similarity distributions of augmented
input views to their negative samples. Feature representation can
be significantly improved by explicitly coupling complex simi-
larity information between the positive augmented samples and
the negative samples with distribution alignment, Fig. 2(b). In
the local perspective, we interpolate randomly selected images
in a mini-batch with a typical data mixture strategy, e.g., cut-
mix [22]. The interpolation ratio can quantitatively control the
apparent similarity of the synthetic image to the original image
pair. Meanwhile, we interpolate features of the image pair with
the same ratio to obtain the feature as the self-supervision signal
of the interpolated image. Attracting corresponding features in
the feature space, the consistency of local interpolation relation
can be assimilated, Fig. 2(c).

By incorporating the global distribution and local interpola-
tion relations in a plug-and-play fashion, the proposed ReCo
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Fig. 1. Instance relation illustration: (a) Global distribution relation enriches
the view-invariant representation from the instance pair level to the dataset level
by aligning similarity distributions, where specific similarities of negative pairs
are well-exploited. For example, the similarity between cat xa and cat xb is
higher than cat xa and guitar xc. (b) Local interpolation relation quantitatively
controls the apparent similarity by utilizing a data mixture technique and exploits
the interpolation consistency by aligning interpolations between the pixel and
the feature spaces. The alignment is achieved by maximizing the similarity of
the features of the interpolated image Xa,e to the interpolated features of the
original images Xa and Xe. The color-circled points in the figure indicate the
features corresponding to the images.

takes full use of specific similarities of diverse sample pairs to
relax the constraint that all positives/negatives should be equally
attracted/repelled. Extensive experiments justify the effective-
ness of ReCo, which produces a locally aggregated yet glob-
ally uniform feature space, Fig. 6. Specifically, ReCo achieves
state-of-the-art performance with 71.3% top-1 accuracy for lin-
ear classification and 78.9% and 87.9% top-5 accuracies for
semi-supervised classification with 1% and 10% labeled data.
Transferring to the VOC [23] dataset, ReCo improves MoCo-
v2 [24] by at least 6.3% mAP for low-shot classification with
k=1,2,4,8,16 and 0.9% AP50 for object detection.

The contributions are summarized as follows:
1) We propose relation-aware contrastive self-supervised

learning (ReCo) to effectively retain the data semantic
structures by exploring instance relations from both global
and local perspectives. It is a novel attempt to break
through the limitation of the error-prone binary label as-
signment of vanilla CSL.

2) We exploit the global distribution relation to explicitly
constrain the specific similarity of different samples other
than repelling all negative samples equally.

3) We exploit the local interpolation relation to carve the
semantic structure of the feature space with quantitative
appearance similarity retention.

4) The proposed ReCo outperforms existing CSL works on
multiple benchmarks and shows better generalization abil-
ity, especially for insufficient supervision regimes, e.g., it
significantly exceeds MoCo-v2 in semi-supervised learn-
ing with 1%/10% labeled data and low-shot classification
with 1/2/4/8/16 samples.

II. RELATED WORKS

A. Unsupervised Visual Representation Learning

Unsupervised visual representation learning aims at utilizing
unlabeled data to learn transferable feature representations to ini-
tialize downstream tasks, such as image classification [4], object

detection [25], and semantic segmentation [26], [27], which can
be roughly divided into handcrafted pretext tasks and contrastive
self-supervised learning.

Handcrafted Pretext Tasks: Such methods typically assimilate
common sense through self-supervision signals generated based
on the inherent structure of the data. Specifically, some works
aim at recovering input images under pre-defined corruptions,
such as colorization [13], inpainting [14], and split-brain autoen-
coding [28]. Some works generate self-supervision via specific
transformations, such as context prediction [12], solving jigsaw
puzzle [8], rotation prediction [15], etc. Developing sophisti-
cated pretext tasks largely depends on human prior knowledge,
which limits their rapid evolution.

Contrastive Self-supervised Learning: With InfoNCE
loss [16] and its variants, CSL methods typically construct
informative positive and negative sets to encode similarities
of positive instance pairs and differences of negative ones.
NPID [17] introduces a memory bank to store features of
the whole dataset and formulates instance discrimination [7]
as a non-parametric classification problem. MoCo [9] pro-
poses a moving-average encoder and a dynamic queue to
build positive and negative pairs effectively and efficiently.
SimCLR [18] fulfills the contrast procedure in the current
mini-batch and introduces more data augmentations to report
impressive performance. Interestingly, some researches justify
that augmentation invariant representations can also be well
learned without negative samples, such as BYOL [29], Sim-
Siam [30], SwAV [31], BarlowTwins [32], etc. Moreover, some
works [33], [34] attempt to combine contrastive loss with hand-
crafted pretext tasks, which demonstrate their complementary
nature.

To better explore class boundary information, some re-
cent works delve into positive sample discovery. Clustering-
based methods [35], [36], [37], [38], [39], [40] target at iter-
atively grouping instances for reliable pseudo label assignment.
Neighbour-discovery-based methods [41], [42], [43], [44], [45]
usually set specific rules to select reliable positive samples in the
local neighbourhood. The contrastive learning paradigm is also
applicable to multimodal scenarios [46], [47], [48]. For instance,
CLIP [47] trains a powerful foundation model and demonstrates
remarkable zero-shot transfer [49], [50] capabilities. Despite the
effectiveness of contrastive learning, as a strong addition to CSL,
relation-aware contrastive learning based on soft instance rela-
tions [51], [52], [53] of similarity distribution at the global level
and interpolation consistency at the local level has not been fully
exploited, which hinders the development of CSL.

B. Instance Relations Exploration

The informative data semantic structure can be captured via
instance relation exploration, which is usually established in
terms of similarity distribution and data interpolation [52], [53],
[54], [55], [56], [57], [58], [59], [60], [61]. The distribution
depicts unique similarities of diverse sample pairs and the in-
terpolation consistency models relations between synthetic im-
ages and original inputs. Their complementary nature appears
under-studied.
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Fig. 2. Architecture overview of our ReCo, which consists of (a) a vanilla CSL framework, e.g., MoCo-v2, (b) global distribution relation, and (c) local
interpolation relation. vi, v̂i, and vi,j are features of input views xi and x̂i, and the interpolated image, respectively. ṽi,j denotes the interpolated feature.

Fig. 3. Detailed implementation framework of our ReCo, in which three mod-
ules are jointly optimized.

Fig. 4. Illustration of the calculation of intra-cluster entropy and inter-cluster
entropy for the analysis of complex relations.

Similarity Distribution: Similarity distribution is typically
exploited in knowledge distillation [52] and consistency reg-
ularization in semi-supervised learning [62], [63]. Logit-based
knowledge distillation [52] proposes to use the output of the soft-
max layer of the teacher model as soft labels to train the student
model. Its effectiveness lies in the fact that the soft labels depict
the relation between different classes. After that, some methods
explicitly establish the structural relation between the outputs
of different samples rather than individual outputs themselves,
e.g., relational knowledge distillation [64], similarity-preserving
knowledge distillation [65], and self-supervised distillation [66],
etc.

Consistency regularization in semi-supervised learning [63],
[67] insists that the output of the model should be similar before
and after perturbing the input data, which is achieved by distri-
bution alignment. A lot of semi-supervised learning works are
devoted to how to generate better target distribution, e.g., Mean
Teacher [63], MixMatch [67], SsCL [68], etc. Some current self-
supervised learning methods [54], [55], [69], [70] are exploring
the utilization of similarity distribution and have achieved re-
markable results. Typically, CO2 [54] improves MoCo-v2 by
additionally aligning the similarity distribution of two views
to negative samples. ISD [69] and ReSSL [55] utilize weak
data augmentation to optimize the distribution alignment term
without explicitly pushing away negative samples. CLSA [70]
matches the distribution obtained from stronger and regular aug-
mentations to explore new patterns ignored in MoCo-v2. How-
ever, the local-level relation that apparently similar inputs should
be close in feature space is not explicitly considered.

Data Mixture: Data mixture typically targets at augmenting
the sample space to reduce incompatibilities during inference.
The model generalization ability can be enhanced by exploring
relations between synthetic and raw data. Mixup [53] performs
the corresponding pixel-weighted summation of the input image
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Fig. 5. Scalability of different pre-training epochs and backbones on ImageNet-100. Note that 0-th epoch in (a) denotes random initialization.

Fig. 6. Visualization of 2-D t-SNE distributions of the embedding space. The
area circled in red is more discriminative. (Best viewed in color)

pairs, and the label is also linearly interpolated. CutMix [22] re-
places the removed regions with a patch from another image.
Beyond supervised scenarios, data mixture is also applied in
semi-supervised [71] and unsupervised [56] learning. Specifi-
cally, UnMix [56] and MixCo [72] perform data mixing in the
input space, and then weight the loss with the interpolation ra-
tio. Deviating from merely local-level interpolation, ReCo fur-
ther exploits the similarity distribution to delineate global-level
relations.

III. METHODOLOGY

CSL methods based on instance discrimination typically rely
on predefined hard binary assignments, which are error-prone
and ignore the exploitation of different relations among in-
stances. To retain the semantic structure of the data and produce a
locally aggregated and globally uniform feature space [21], [73],
we propose relation-aware contrastive self-supervised learning

(ReCo) which simultaneously explores soft instance relations
of similarity distribution at the global level and interpolation
consistency at the local level, Fig. 2.

A. Overview

Baseline: We choose the seminal work MoCo-v2 [24] to clar-
ify the implementation details of our ReCo which can also be
applied on common CSL frameworks. It takes two views of
the i-th instance xi and x̂i as input, which are generated from
the same image through a combination of data augmentations.
The corresponding features vi and v̂i are extracted by an on-
line encoder fθ and a momentum encoder fθ̂ as vi = fθ(xi) and
v̂i = fθ̂(x̂i), where the encoder consists of a backbone network
(e.g. ResNet-50 [4]) and an MLP head, Fig. 2(a). The feature v̂i
from the momentum branch is stored in a queue (memory bank)
with the size of K. vi and v̂i are defined as positive sample pairs
that attract each other in the feature space while staying away
from the negative samples in the queue. The learning objective
is to minimize the InfoNCE [16] loss:

Lcsl = − 1

N

N∑

i=1

log
exp(vi · v̂i/τ)

exp(vi · v̂i/τ) +
∑K

j exp(vi · ṽj/τ)
,

(1)
where N is the training set size, τ is the temperature [52], and
ṽj is the j-th sample in the queue.

Pipeline: As illustrated in Fig. 2, ReCo consists of three mod-
ules : (a) a vanilla CSL framework (MoCo-v2), (b) global distri-
bution relation, and (c) local interpolation relation. The global
distribution relation utilizes distribution alignment to fully use
the specific similarities of diverse samples to relax the constraint
that all negatives are equally repelled. The local interpolation re-
lation applies image interpolation between random sample pairs.
It explores the interpolation consistency relation between pixel
and feature space to quantitatively model samples’ apparent sim-
ilarity.

The overall loss function of ReCo is a combination of the
infoNCE loss Lcsl, the global distribution relation loss Lglobal,
and the local interpolation relation loss Llocal, which can be
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formulated as

L = Lcsl + λ1Lglobal + λ2Llocal, (2)

where λ1 and λ2 are balance weights of Lglobal and Llocal.

B. Global Distribution Relation

We extend view-invariant representation learning from the
instance level to the distribution level, which is inspired by the
consistency regularization in semi-supervised learning that the
output of the model (probability distribution) should be sim-
ilar under variations in the input space [63], [67]. The distri-
bution depicts the specific similarities between different classes
and therefore retains rich global relations. Concretely, the global
distribution relation is materialized with distribution generation
and distribution alignment, Fig. 3.

Distribution Generation: We calculate the similarity distri-
bution of each input view to its negative samples based on
the embedding features extracted by the encoder. To obtain
a stable target distribution, we employ weak data augmenta-
tion that does not introduce severe variation [67]. Therefore,
we utilize a new branch with weak augmentation to obtain
x̄i (top of Fig. 3), which is augmented by only randomly re-
sized cropping and random horizontal flipping. To make the
differences between samples more transparent, we use a smaller
temperature to sharpen the distribution. Specifically, the dis-
tribution obtained by vi is regarded as the online distribution
for gradient back-propagation while the distribution obtained
by v̄i is used as the target distribution. Accordingly, for the
i-th instance sampled from the min-batch, the online distri-
bution So(i) and target distribution St(i) can be calculated
by So(i) = {sj = vi · ṽTj /τot|j = 1, 2, 3, . . ., N} and St(i) =

{sj = v̄i · ṽTj /τtt|j = 1, 2, 3, . . ., N} respectively. Note that ṽj
denotes the feature stored in the memory bank, τot and τtt are
temperature parameters that control the degree of sharpening of
the distribution.

Distribution Alignment: For the two generated distributions,
our goal is to align them with a given objective function. Since
Kullback–Leibler (KL) divergence [74] is often used in statistics
to measure the degree of difference between two distributions,
we use KL divergence by default as the objective function to
align the two distributions So(i) and St(i). In this way, the
objective function of global distribution relation is formed by

Lglobal =
1

N

N∑

i=1

DKL(S
t(i)||So(i)). (3)

Note that N refers to the size of the training set, and St(i) does
not perform the gradient back-propagation.

C. Local Interpolation Relation

We utilize image mixture strategy to quantitatively simulate
apparently similar images. Existing data mixture strategy [22],
[53] forces the model to behave linearly when dealing with
in-between training examples, that is, the image and target are
the corresponding linear interpolation. We exploit this linearity
to model local interpolation relation. Specifically, we interpolate

image pairs and their features with the same ratio, and then pull
the extracted features of the interpolated images and the corre-
sponding interpolated features as close as possible in the feature
space. The interpolation consistency relation can be well assim-
ilated by transferring the interpolation ratio from pixel space to
feature space. The procedure of local interpolation relation can
be detailed as three steps: pixel-level interpolation, feature-level
interpolation, and interpolation consistency, Fig. 3.

Pixel-level Interpolation: For each mini-batch, we first sam-
ple an interpolation ratio r from the beta distribution as r ∈
Beta(α, α), where α is a hyper-parameter set to 1.0 by default.
Then, for two selected instances xi and xj in the mini-batch
with size Nb, they are interpolated with the ratio r to form the
synthetic image xi,j . The embedding feature of the interpolated
image is defined as

vi,j = fθ(r · xi ⊕ (1− r) · xj), (4)

where ⊕ denotes image interpolation operation. Specifically,
to randomly select two images for interpolating, the index i
is sampled from an ordered set NNb

order = {0, 1, 2, . . ., Nb − 1}
and j is sampled from a random-arrangement set NNb

rand =

randperm(NNb

order), where randperm() denotes shuffle the or-
der randomly.

Feature-level Interpolation: To correspond to the feature
of interpolated image vi,j under the simple linearization con-
straint [22], [53], we generate interpolated feature ṽi,j according
to the ratio r, which is regarded as the pseudo “ground-truth”
feature of vi,j . The normalized feature interpolation in the em-
bedding space can be obtained by

ṽi,j = �2(r · fθ(xi) + (1− r) · fθ(xj)), (5)

where �2 denotes normalization.
Interpolation Consistency: To assimilate interpolation consis-

tency relations, the feature of the interpolated image vi,j and the
interpolated feature ṽi,j should be attracted to each other, that is
transferring interpolation ratio from pixel space to feature space.
It can be achieved using contrastive loss. Accordingly, the loss
function of the local interpolation relation is formulated as

Llocal =
1

N

∑

i∈NN
order,j∈NN

rand

−logP (i, j),

P (i, j) =
exp(vi,j · ṽi,j/τ)∑

k∈[0,K) exp(vi,j · ṽk/τ)
, (6)

where ṽk is the feature stored in the memory bank and ṽi,j con-
ducts stop-gradient operation.

D. Discussion

We detail the differences between our ReCo and existing
distribution-based and interpolation-based CSL methods in the
aspect of exploiting instance relations. Besides, ReCo further
pursues the complementary nature of these two relations in re-
taining semantic structure, Table V and Fig. 6.

Distribution-based Methods: Distribution-based methods uti-
lize different ways to calculate the similarity distribution and
then align the distributions to explore global-level relations. In
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specific, CO2 [54] utilizes the features of the two branches of
MoCo-v2 to obtain the similarity distribution and then uses dis-
tribution alignment as a regularization term. ReSSL [55] utilizes
weak data augmentation to obtain the target distribution and uses
a single distribution alignment loss as the optimization objec-
tive. CLSA [70] utilizes stronger and regular data augmentation
to obtain two distributions as online distribution and target dis-
tribution, respectively. Instead, ReCo uses weak augmentation
to obtain the target distribution for distribution alignment, which
is used to constrain the InfoNCE loss. Moreover, ReCo uses in-
terpolation to explicitly model the local relation that apparently
similar inputs are close in feature space, which is not consid-
ered in existing distribution-based methods. More details can be
referred in Table VII.

Interpolation-based Methods: ReCo quantitatively models
the relation of the interpolated data to original inputs in the fea-
ture space. Un-Mix [56] and MixCo [72] interpolate in the input
space and then weight the loss corresponding to the interpolation
ratio. In contrast, we directly interpolate the features according
to the interpolation ratio instead of weighting the loss. In specific,
there are 4 options for interpolation: q and randperm(q), q and
randperm(k), k and randperm(q), and k and randperm(k),
where randperm() denotes randomly shuffle the order of the
batch. Since different views may differ greatly in the early train-
ing stages, we claim that the choice of image pairs and feature
pairs for interpolation has a large impact on the interpolation
consistency relation, which has been completely ignored in pre-
vious methods. More importantly, ReCo not only considers the
local interpolation relation, but also further explores the global
distribution relation. More comparisons are shown in Table VIII.

IV. EXPERIMENTS

A. Pre-Training Settings

ResNet-50 [4] is set as the backbone network by default. The
size of each view is set to 224 × 224 for ImageNet pre-training.
We use the SGD optimizer with the momentum of 0.9 and weight
decay of 0.0005. A cosine learning rate scheduler is employed
with a base learning rate of 0.03, and the batch size is 256. The
temperature τ of InfoNCE loss is 0.2. The size of the memory
bank is 65536 and the momentum encoder is updated with a
parameter of 0.999.

B. Ablation Study

Setup: To quickly verify the effectiveness under different pa-
rameter settings, we conduct ablation experiments on ImageNet-
100 [75] with ResNet-50 [4] architecture and train for 100
epochs. We set the batch size to 128 with the base learning
rate of 0.03. Other experimental settings are the same as those
of ImageNet-1 K.

Temperature Parameters: Since the temperature parameter in
the InfoNCE loss is crucial to balance uniformity and tolerance
of the learned embedding space [21], we tune the temperatures
τot and τtt carefully. First, we empirically set an approximate
range of their values referring to the settings in MoCo (τ=0.07)
and MoCo-v2 (τ=0.2). Then, we finely adjust them for the best

TABLE I
ABLATION OF TEMPERATURE PARAMETERS IN DISTRIBUTION GENERATION

TABLE II
COMPARISON OF DIFFERENT SETTINGS FOR THE COEFFICIENTS IN THE LOSS

FUNCTION

TABLE III
COMPARISON OF INTRA-/ INTER-CLASS SIMILARITY. (×100)

performance. Results of different temperature parameters are
shown in Table I. In general, ce is better when τot is larger than
τtt. Especially, the performance drops dramatically when τtt is
larger than τot (the last line). This is because a smaller τtt can
sharpen the target distribution and make the difference between
various sample pairs more obvious. We set τtt=0.04 and τot=0.1
by default for the best top-1 accuracy of 73.6%.

Coefficients: We study how the global distribution relation
term Lglobal and the local interpolation relation term Llocal in
Eq. (2) affect the feature representation by using different values
of λ1 and λ2. We first determine λ1 based on Lcsl and Lglobal

(2 losses), then fix the obtained λ1 to adjust the coefficient λ2

(3 losses). As shown in Table II, when λ1=1.0 and λ2=2.0, the
best top-1 accuracy is 78.8%.

Intra-/ Inter-Class Similarity: To quantitatively verify the se-
mantic structure of the feature space [21], [73], [76], we define
the intra-class similarity as sintra = 1

N

∑N
i

∑
x+∈Sp

xi·x+

||Sp|| , the

inter-class similarity as sinter = 1
N

∑N
i

∑
x−∈Sn

xi·x−
||Sn|| , and the

discriminative index as φ = 1
N

∑N
i

∑
x+∈Sp

xi ·x+

||Sp || +1
∑

x−∈Sn
xi ·x−
||Sn || +1

, where N

is the number of samples, Sp is the set of all samples that be-
long to the same semantic class as xi based on the ground truth,
and Sn is the set of samples of other different classes. Table III
reports the results on the ImageNet-100 val set. Experimental
results show that ReCo presents higher intra-class similarity and
discriminative index than MoCo-v2, which demonstrates that a
better semantic structure is obtained [21], [76], [77].
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TABLE IV
SEMANTIC RELATION EVALUATION FOR THE LEARNED FEATURE SPACE OF OUR

RECO ON CIFAR-10

Complex Relations: Inspired by [78], we investigate com-
plex relations in the high-dimensional feature spaces with two
metrics: average intra-cluster entropy (IntraEN) and average
inter-cluster entropy (InterEN). IntraEN measures class dom-
inance within a cluster, while InterEN measures sample disper-
sion of the same class across different clusters. Intra-cluster and
inter-cluster entropy are calculated by measuring the frequency
distribution of different categories within the same cluster and
the distribution of the same category among different clusters,
Fig. 4. Smaller IntraEN and InterEN values indicate better se-
mantic structure. We train models for 200 epochs on the training
set of CIFAR-10 and evaluate on its test set with K=10. Table IV
shows that ReCo outperforms MoCo-v2 on both metrics and
achieves results closer to those of SupCon [79], demonstrating
that ReCo captures better semantic structure in high-dimensional
feature spaces.

Scalability: The scalability of our model is verified by training
with different epochs and backbones. Fig. 5(a) shows the linear
classification accuracies of the pre-trained model under different
epochs, which shows that higher performance can be obtained
with longer training iterations. Moreover, ReCo with 100 epochs
can significantly outperform MoCo-v2 with 200 epochs, which
demonstrates the pre-training efficiency of ReCo. Fig. 5(b) fur-
ther verifies that ReCo can effectively improve the performance
of the baseline under various backbones including AlexNet [3],
VGG-16 [80] and ResNet-18/34/50 [4].

Module Efficacy: We quantitatively demonstrate the effec-
tiveness of the global distribution relation and local interpola-
tion relation in our ReCo based on MoCo-v2 and BYOL. To
ensure a fair comparison, we conducted experiments under the
same running time. Specifically, the training time of MoCo-v2
for 200 epochs is close to that of MoCo-v2+Global (i.e., with
only global distribution alignment branch) and MoCo-v2+Local
(i.e., with only local interpolation consistency branch) for 160
epochs, and the time of ReCo training for 135 epochs. In
Table V, both modules significantly improve the baseline perfor-
mance, and the combination proves their complementarity for
semantic structure retention. In Table VI, the VOC object detec-
tion results show that global distribution relation has no obvious
advantage in precise location (AP75). We simply set the param-
eters of the global distribution relation τtt and τot to 0.1, AP
can be improved by 1.0%, and AP75 by 1.5%. This also shows
that the pre-trained model performs well on classification do not
necessarily perform well on object detection [20].

Distribution-based Methods: To demonstrate the difference
from existing distribution-based methods, we compare them in

TABLE V
EVALUATION ON THE IMAGENET-100 DATASET WITH RESNET-50 BY

PERFORMING LINEAR CLASSIFICATION ACCURACY

TABLE VI
EVALUATION OF OBJECT DETECTION ON VOC 07+12 WITH THE MODEL

PRE-TRAINED ON IMAGENET-100 FOR 100 EPOCHS

TABLE VII
COMPARISON OF THE DIFFERENCES BETWEEN DISTRIBUTION-BASED

METHODS UNDER TRAINING IMAGENET-100 FOR 100 EPOCHS

detail in Table VII. The differences in related works are reflected
in the feature embedding dimension (Dim.), the encoder used to
generate the distribution (Encod.), the type of data augmentation
(Aug.), whether the distribution is sharpened (Sharp.), whether
there is a contrastive learning loss to assist (Contra.), and whether
the distribution alignment and contrastive loss are decoupled
(Decoup.). Note that “o” and “t” denote the online encoder and
target encoder, and “r”, “w” and “s” denote regular augmenta-
tion, weak augmentation, and strong augmentation respectively.
We reimplement the related methods, and the experimental re-
sults show that our global distribution relation (ReCo-Global)
achieves the highest performance of 73.6% on ImageNet-100.

Interpolation-based Methods: In Table VIII, our method dif-
fers from related works in the implementation of the interpola-
tion method and interpolation ratio correspondence. In particu-
lar, previous methods interpolate at the loss level (Loss Inter.),
while we interpolate at the feature level (Feature Inter.). In ad-
dition, we also compare the impact of different interpolation
methods in our local interpolation relation (ReCo-Local). The
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TABLE VIII
COMPARISON OF THE DIFFERENCES BETWEEN INTERPOLATION-BASED

METHODS UNDER TRAINING IMAGENET-100 FOR 100 EPOCHS

TABLE IX
COMPARISON OF CLSA+Llocal AND RECO

q/k interpolation in the corresponding pixel space and feature
space obtains the best performance of 74.9%.

Combining CLSA and Llocal: Since CLSA utilizes stronger
augmentation as a query branch and has similar Lglobal loss,
we combine CLSA (LC + β * LD) with Llocal to verify the
effectiveness of our method. The overall loss function is for-
mulated as LC + β * LD + γ * Llocal, where the coefficients
β and γ are set to 1 by default. As shown in Table IX, ReCo
outperforms CLSA+Llocal on both IN-100 (ImageNet-100) and
IN-1 K (ImageNet-1 K).

C. Performance and Comparison

Comparisons are mainly listed on 4 downstream tasks: linear
classification, semi-supervised classification, low-shot classifi-
cation, and VOC object detection. More experiments (e.g. kNN
classification, COCO object detection and instance segmenta-
tion, and Cityscapes semantic segmentation) can be found in
supplementary materials.

1) Linear Classification: Convolutional layers initialized by
the pre-trained model are frozen while a fully connected lin-
ear classifier is initialized from scratch. Its results represent the
discriminative ability of the learned representation.

Setup: We use a LARS optimizer for training 90 epochs with
an initial learning rate of 0.1 ∗ batch/256. We incorporate 4
additional views with 4 different sizes (192×192, 160×160,
128×128, and 96×96) as queries to implement the multi-crop
augmentation strategy. More details can be found in supplemen-
tary materials.

Results: Table X reports the top-1 and top-5 accuracies of
SOTA methods on ImageNet-1 K, where our re-implementation
of MoCo-v2 achieves 67.6% top-1 accuracy (0.1% higher
than the official result). By incorporating instance relations
exploration, our ReCo achieves a new SOTA top-1 accuracy of

71.3%, which improves the baseline MoCo-v2 by 3.7%. For the
same running time (i.e., MoCo-v2 trains for 200 epochs while
ReCo trains for 135 epochs), ReCo outperforms MoCo-v2 by
2.0% (69.6% vs 67.6%). These results demonstrate that ReCo
retains data semantic structures via exploring instance relations
to enhance the feature discriminative capabilities. Trained
with merely 200 epochs, ReCo even exceeds that of MoCo-v2
with 800 epochs, which proves that ReCo can also improve the
pre-training efficiency. After training for 800 epochs, ReCo with
multi-crop augmentation strategy achieves a top-1 accuracy of
75.4%, which presents a 1.7% improvement over the results
obtained after 200 epochs.

2) Semi-Supervised Classification: Semi-supervised classi-
fication first learns from large-scale unlabeled data and then
fine-tunes on small labeled data.

Setup: The backbone and linear layer are fine-tuned on Im-
ageNet with 1% and 10% labeled data. The SGD optimizer is
used to train 20 epochs with a batch size of 256. The learning
rate is set to 0.01 for the backbone and 1.0 for the linear layer.

Results: Experimental results in Table XI show that ReCo
consistently achieves the best performance under different label
fractions. Specifically, ReCo surpasses MoCo-v2 by 13.4% top-
1 accuracy with 1% labeled data, which demonstrates that the
semantic structure learned by exploring instance relations can
be more advantageous under insufficient data settings.

3) Transferring to Low-Shot Classification: To verify the
discrimination capability of learned features, we train linear
SVM using fixed features of conv5 under low-shot settings.

Setup: Following PCL [39], linear SVM is trained on the
VOC [23] 2007 trainval set and tested on the test set. We
select k (k=1,2,4,8,16) samples from each class for training.
Performance is evaluated by mean average precision (mAP).

Results: As shown in Table XII, ReCo improves MoCo-v2
by 7.7/7.5/8.3/7.1/6.3 under 1/2/4/8/16 shots. In particular, the
performance of ReCo is comparable to the supervised trained
model. These indicate that the features learned by ReCo are
sufficiently discriminative and representative.

4) Transferring to Object Detection: To verify the transfer-
ability and generalization capacity of the learned representation,
we transfer the trained model to object detection.

Setup: We fine-tune the Faster R-CNN [25] with ResNet50-C4
architecture on VOC trainval 07+12 and evaluate the results
on test 2007. The detailed experimental setup can be found in
supplementary materials.

Results: In Table XIII, all state-of-the-art CSL methods out-
perform supervised pre-training on the object detection task,
which demonstrates the advantage of CSL for transfer learn-
ing. With τtt/τot=0.1/0.1, ReCo presents 0.6/0.9/0.6 gains over
MoCo-v2 under AP/AP50/AP75. These results demonstrate that
exploring instance relations improves the transferability and
generalization of the model.

D. Visualization

Embedding Space: We simply use the CIFAR-10 [92] val
set with 10 categories for feature space visualization. The t-
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TABLE X
COMPARISONS ON IMAGENET-1 K UNDER LINEAR CLASSIFICATION (LC) EVALUATION

TABLE XI
COMPARISON OF SEMI-SUPERVISED CLASSIFICATION

SNE [93] technique is utilized to map the feature space onto a
2D plane. Fig. 6 shows intra- and inter-class variation, which
reflects the semantic structure of the data. With InfoNCE loss,

MoCo-v2 can learn semantic structure to a certain extent, but
the interstice between different categories is not clear enough.
By considering global distribution relations or local interpola-
tion relations separately, the degree of discrimination of different
categories is more obvious than MoCo-v2. In particular, ReCo
can obtain a feature space with better semantic structure by com-
bining these two.

Activation Map: We use Grad-CAM [94] to visualize ac-
tivation map. As shown in Fig. 7, the supervised pre-trained
model focuses on the entire object or discriminative regions of
the object, while the model learned by MoCo-v2 is more dis-
tracted and even focuses on non-foreground object regions. This
is because instance discrimination approaches aim at learning
sample-specific features while supervised training exploits se-
mantic label information to learn class-specific discriminative
features. Compared with MoCo-v2, the model learned by ReCo
pays more attention to foreground objects, which is more similar
to the supervised training model. This demonstrates the advan-
tage of ReCo in retaining semantic structure.
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TABLE XII
EVALUATION OF LOW-SHOT CLASSIFICATION ON VOC2007 USING LINEAR

SVMS TRAINED ON FIXED REPRESENTATIONS

TABLE XIII
FINE-TUNING OBJECT DETECTION ON PASCAL VOC

Fig. 7. Activation maps of different pre-trained models using Grad-CAM.
Redder colors represent areas that the network pays more attention to.

V. CONCLUSION

In this article, we explicitly exploit semantic relations among
instances for relation-aware contrastive self-supervised learn-
ing (ReCo). Unlike previous instance discrimination-based CSL
methods that only contrast samples with pre-defined hard binary
error-prone assignments, ReCo simultaneously explores the soft
relation in instance similarity distributions at the global level
and interpolation consistency at the local level. With a better se-
mantic structure, the learned feature space appears to be locally
aggregated yet globally uniform. It is worth noting that, similar
to commonly employed self-supervised learning approaches for
object-centric images, our ReCo also faces challenges in avoid-
ing semantic inconsistency across multiple augmented views,
particularly in complex images with multiple objects. Still, we
expect that ReCo can provide fresh insights into the CSL com-
munity, e.g., introducing neighborhood discovery or clustering
techniques for better semantic-aware instance relation explo-
ration, extended to various data of different formats and modal-
ities fueled by specialized similarity distributions and data in-
terpolations.
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